Abstract

Fabricating thin film solar cells (TFSCs) on flexible substrates will not only broaden the applications of solar cells, but also potentially reduce the installation cost. However, a critical challenge for fabricating flexible TFSCs on flexible substrates is the incompatibility issues between the thermal, mechanical, and chemical properties of these substrates and the fabrication conditions. Transfer printing methods, which use conventional substrates for the fabrication and then deliver the TFSCs onto flexible substrates, play a key role to overcome these challenges. In this review, we discuss the basic concepts and working principles of four major transfer printing methods associated with (1) transfer by sacrificial layers, (2) transfer by porous Si layer, (3) transfer by controlled crack, and (4) transfer by water-assisted thin film delamination. We also discuss the challenges and opportunities for implementing these methods for practical solar cell manufacture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.