Abstract

Negatively charged nitrogen-vacancy (NV) centers in diamond have emerged as promising candidates for a wide range of quantum applications, especially quantum sensing of magnetic field. Implementation of nanostructure into diamond is powerful for efficient photon collection of NV centers and chip-scale miniaturization of the device, which is crucial for sensitive and practical diamond magnetometers. However, fabrication of the diamond nanostructure involves technical limitations and can degrade the spin coherence of the NV centers. In this study, we demonstrate the hybrid integration of a silicon nitride grating structure on a single-crystal diamond by utilizing transfer printing. This approach allows the implementation of the nanostructure in diamond using a simple pick-and-place assembly, facilitating diamond-based quantum applications without any complicated diamond nanofabrication. We observed the intensity enhancement in the collected NV emissions both theoretically and experimentally using the integrated grating structure. By applying the increased photon intensity, we demonstrate the improved magnetic sensitivity of the fabricated device. The proposed hybrid integration approach will offer a promising route toward a compact and sensitive diamond NV-based magnetometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call