Abstract
Printing methods are becoming important in the fabrication of flexible electronics. A transfer printing method has been developed for the fabrication of organic thin-film transistors (OTFT), capacitors, resistors and inductors onto plastic substrates. The method relies primarily on differential adhesion for the transfer of a printable layer from a transfer substrate to a device substrate. A range of materials applications is illustrated, including metals, organic semiconductors, organic dielectrics, nanotube and nanowire mats, a patterned inorganic semiconductor and graphene. Transfer printing can be used to create complex structures including many disparate materials sequentially printed onto the flexible substrate, with no mixed processing steps performed on the device substrate. Specifically, the fabrication and performance of model OTFT devices consisting of a polyethylene terephthalate (PET) substrate, gold (Au) gate and source/drain electrodes, a poly(methyl methacrylate) (PMMA) dielectric layer and either a pentacene (Pn) or a poly(3hexylthiophene) (P3HT) organic semiconductor layer will be presented. These transfer printed OTFTs on plastic outperform non-printed devices on a Si substrate with a SiO2 dielectric layer (SiO2/Si). Transfer printed Pn OTFTs on a plastic substrate have exhibited mobilities of 0.237 cm 2
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.