Abstract

The demands on improving the noise, vibration and harshness of passenger vehicles are growing rapidly. Low-frequency vibration of steering wheel is one of the most important factors leading to the discomfort of drivers. This study proposes a systematic analysis methodology to reduce the low-frequency vibration of steering wheel using classical transfer path analysis (CTPA). The theoretical basics of TPA using dynamic stiffness approach and inverse matrix approach are briefly introduced, and then the experimental apparatus and analysis procedures in performing the TPA are introduced. The static forces in the rubber mounts of the powertrain system are calculated, the dynamic stiffness of the rubber mounts are estimated, and the operational forces are determined. The contributions of different transfer paths to the vibration of steering wheel are analyzed and compared, and the predominant causes are identified. The results show that the vibration of steering wheel along the X direction is protruded at the engine ignition frequency, and the vibration of the exhaust system along the X direction contributes most to the vibration because of large frequency response function. The mounting structure of the exhaust system is modified based on modal analysis results using finite element method to reduce the vibration of steering wheel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call