Abstract

Soil Aquifer Treatment (SAT) can provide supplementary treatment of trace organic compounds (TrOCs) such as pharmaceutical and industrial compounds present in Secondary Treated Wastewater (STWW). Concern on presence of unregulated TrOCs in natural systems has raised recently as well as the interest in SAT systems for remediation. The present study quantifies, at the field scale over35 m of lateral groundwater flow, the effectiveness of the Agon-Coutainville SAT system (Manche, Normandy, France) for TrOCs removal by sorption and biodegradation through monitoring of seven TrOCs (oxazepam, carbamazepine, benzotriazole, tolyltriazole, caffein, paracetamol, ibuprofen) and major inorganic compounds as intrinsic tracers in STWW and groundwater during a 34-day STWW infiltration experiment during operational use of the SAT. Cationic exchanges and mixing between groundwater and STWW during the experiment were highlighted by major ions and geochemical simulations. Due to the low thickness of the unsaturated zone, a 1D analytical solution of the advection-dispersion equation (ADE) was applied on chloride data. Chloride was used as conservative intrinsic tracer to calibrate the horizontal flow and transport parameters such as the aquifer dispersion coefficient (D) and the average pore water velocity (ν) allowing estimation of the groundwater residence time. Transport and attenuation of the TrOCs were simulated assuming first-order degradation constant (μ) and linear retardation coefficient (R), calibrated to simulate the observed temporal changes in the breakthrough of TrOCs. Sorption was found to play a role in the transport of TrOCs, notably for oxazepam with a higher linear retardation coefficient value of 2.2, whereas no significant differences of retardation were observed for carbamazepine, tolyltriazole, benzotriazole (1.37, 1.35, 1.36 respectively). Estimated first order degradation rate constants, between 0.03d-1 for carbamazepine and 0.09d-1 for tolyltriazole, were generally high compared to the literature, possibly due to favourable redox conditions and important microbial activities within the system. This study provides evidence of the efficiency of the Agon-Coutainville SAT system for the removal of TrOCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call