Abstract

We examine transfer of particle entanglement and spin squeezing between atomic and photonic subsystems in optical cavities coupled by two-photon exchange. Each cavity contains a single atom, interacting with cavity photons with a two-photon cascade transition. Particle entanglement is characterized by evaluating optimal spin squeezing inequalities for the cases of initially separable and entangled two-photon states. It is found that particle entanglement is first generated among the photons in separate cavities and then transferred to the atoms. The underlying mechanism is recognized as an intercavity two-axis twisting spin squeezing interaction, induced by two-photon exchange, and its optimal combination with the intracavity atom–photon coupling. Relative effect of nonlocal two-photon exchange and local atom–photon interactions of cavity photons on the spin squeezing and entanglement transfer is pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.