Abstract

We present a systematic study on the effects of dynamical transfer and steady-state synchronization of quantum states in a hybrid optomechanical network consisting of two cavities, which carry atoms inside and interact via a common moving mirror such as the mechanical oscillator. It is found that a high fidelity transfer of Schrödinger’s cat and squeezed states between two cavities modes is possible. On the other hand, we demonstrate the synchronization effect of the cavity modes in a steady squeezed state with its high fidelity realized by the mechanical oscillator that intermediates the generation, transfer and stabilization of the squeezing. In this framework, we also study the generation and evolution of bipartite and tripartite entanglement and find its connection to the effects of quantum state transfer and synchronization. Particularly, when the transfer occurs at the maximal fidelity, any entanglement is almost zero, so the different cavity modes are disentangled. However, these modes become entangled when the two bosonic modes are synchronized in a stationary squeezed state. The results provided by the current study may find applications in quantum information technologies, in addition to the setups for metrology, where squeezed states are essential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call