Abstract

Process and tool condition monitoring systems are a prerequisite for autonomous production. One approach to monitoring individual parts without complex cutting simulations is the transfer of knowledge among similar monitoring scenarios. This paper introduces a novel monitoring method which transfers monitoring limits for process signals between different machine tools. The method calculates monitoring limits statistically from cutting processes carried out on one or more similar machines. The monitoring algorithm aims to detect general process anomalies online. Experiments comprise face-turning operations at five different lathes, four of which were of the same model. Results include the successful transfer of monitoring limits between machines of the same model for the detection of material anomalies. In comparison to an approach based on dynamic time warping (DTW) and density-based spatial clustering of applications with noise (DBSCAN), the new method showed fewer false alarms and higher detection rates. However, for the transfer between different models of machines, the successful application of the new method is limited. This is predominantly due to limitations of the employed process component isolation and differences between machine models in terms of signal properties as well as execution speed.

Highlights

  • To simulate a process anomaly, an axial groove was machined in the face of the workpiece before the actual face turning operation (Figure 1, right)

  • This paper proposed a new method to enable online detection of anomalies in machin4

  • Process components in signals were isolated to in Experiments and the analysis focused on the influence of different machines on the the similarity signals across

Read more

Summary

Introduction

The method calculates monitoring limits statistically from cutting processes carried out on one or more similar machines. The monitoring algorithm aims to detect general process anomalies online. Results include the successful transfer of monitoring limits between machines of the same model for the detection of material anomalies. In comparison to an approach based on dynamic time warping (DTW) and density-based spatial clustering of applications with noise (DBSCAN), the new method showed fewer false alarms and higher detection rates. For the transfer between different models of machines, the successful application of the new method is limited. This is predominantly due to limitations of the employed process component isolation and differences between machine models in terms of signal properties as well as execution speed

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.