Abstract

In this work, graph neural networks (GNNs) and transfer learning are leveraged to transfer device sizing knowledge learned from data of related analog circuit topologies to predict the performance of a new topology. A graph is generated from the netlist of a circuit, with nodes representing the devices and edges the connections between devices. To allow for the simultaneous training of GNNs on data of multiple topologies, graph isomorphism networks are adopted to address the limitation of graph convolutional networks in distinguishing between different graph structures. The techniques are applied to transfer predictions of performance across four op-amp topologies in a 65 nm technology, with 10000 sets of sizing and performance evaluations sampled for each circuit. Two scenarios, zero-shot learning and few-shot learning, are considered based on the availability of data in the target domain. Results from the analysis indicate that zero-shot learning with GNNs trained on all the data of the three related topologies is effective for coarse estimates of the performance of the fourth unseen circuit without requiring any data from the fourth circuit. Few-shot learning by fine-tuning the GNNs with a small dataset of 100 points from the target topology after pre-training on data from the other three topologies further boosts the model performance. The fine-tuned GNNs outperform the baseline artificial neural networks (ANNs) trained on the same dataset of 100 points from the target topology

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call