Abstract

BackgroundAnti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood–brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients.MethodsIn this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients’ peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2−/−Il2rg−/−SirpαNODFlk2−/− mice.ResultsWe found that engraftment of patients’ PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1β as a hub gene implicated in pathological changes. We further demonstrated that Il-1β was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors.ConclusionsOur study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient’s lymphocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call