Abstract
Transfer of activity generated by prior optokinetic (OK) stimuli of one minute's duration to nystagmus induced in darkness by a subsequent vestibular stimulus consisting of step velocities to and from 40 degrees/s-1 was studied in 10 normal subjects. Four types of OK stimuli were used: (a) full field 'passive'; (b) full field 'active'; (c) full field in the presence of optic fixation, and (d) small OK drum stimulation. Transfer (T) was evident under all conditions and resulted in an enhancement of the vestibulo-ocular (VO) response when activity from the two stimuli were in the same direction (S) and a suppression when in the opposite (O). Expressed by the equation: Formula See Text. the respective transfer values obtained for the above conditions were (a) 66%, (b) 58%, (c) 22%, and (d) 54%. In all tests, rightward OK drum movement was more effective than leftward. In respect of passive OKN the resultant response can be well represented as the algebraic summation of the expected optokinetic after-nystagmus (OKAN) and the VO response, though opposing OKAN is more effective than enhancing. Passive OKN is more effective than active and this can be accounted for by the small contribution made by retinal slip in the former (the indirect path). Surprisingly, the small drum proved almost as effective as active OKN in terms of transfer. Fixation in the presence of full-field OK stimuli induces a non-directionally specific depression of the subsequent VO response, implying that retinal slip could contribute to the mechanism of VO response suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.