Abstract

The extent to which nutrients from Pacific salmon are transported to riparian areas may be influenced by differences in spawning behavior among species. Chum salmon Oncorhynchus keta, pink salmon O. gorbuscha, and sockeye salmon O. nerka typically spawn in dense aggregations, while species like steelhead O. mykiss and coho salmon O. kisutch spawn at lower densities. The contribution of nutrients to riparian vegetation was compared at two watersheds in western Washington, Griffin Creek (used by coho salmon) and Kennedy Creek (used by chum salmon). Salmonberry Rubus spectabilis foliage was collected at the channel edge above and below barriers to spawning salmon and at 20, 50, and 100 m upslope from the stream and analyzed for nitrogen stable isotope ratio (δ15N, an indicator of salmon-derived nitrogen), total nitrogen (N), and phosphorus (P) content. Cover, plant density, and the species richness of shrub and understory vegetation were compared between sites with and without salmon. The δ15N values in salmonberry leaves were higher at sites with salmon than at corresponding distances from the channel at sites without salmon at Kennedy Creek but not Griffin Creek. Salmonberry foliage adjacent to salmon spawning reaches possessed significantly higher levels of total N and P in both watersheds. Nitrogen content was positively associated with δ15N values at the Kennedy Creek sites but not at the Griffin Creek sites. At Kennedy Creek, shrub species diversity and understory plant density and species diversity were higher at sites with salmon than at sites without salmon. These results suggest that areas bordering streams utilized by high-density-spawning species like chum salmon receive a substantial nutrient contribution from the fish and that this subsidy influences the vegetation. We did not see clear evidence for a similar nutrient contribution from coho salmon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.