Abstract
Intercellular organelle transfer has been documented in several cell types and has been proposed to be important for cell-cell communication and cellular repair. However, the mechanisms by which organelle transfer occurs are uncertain. Recent studies indicate that the gap junction protein, connexin 43 (Cx43), is required for mitochondrial transfer but its specific role is unknown. Using three-dimensional electron microscopy and immunogold labeling of Cx43, this report shows that whole organelles including mitochondria and endosomes are incorporated into double-membrane vesicles, called connexosomes or annular gap junctions, that form as a result of gap junction internalization. These findings demonstrate a novel mechanism for intercellular organelle transfer mediated by Cx43 gap junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.