Abstract
Shear strain effects within fiber Bragg grating sensors have been neglected in the theoretical treatment of these devices. Shear strains do however occur in everyday applications and additionally shear strains do change the spectral response of these sensors. This may lead to a nonlinear behavior or measurement errors. We develop a transfer matrix method using coupled mode theory, that is capable of modeling the encountered effects. The effects include intra grating polarization mode coupling and changes of the spectral response. We show how the transfer matrix is derived and construct a test case for checking the correctness of its results. We compute different load cases and compare the obtained solutions to the numerically integrated coupled mode equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.