Abstract
In this paper, we present an empirical analysis on transfer learning using the Fuzzy Min---Max (FMM) neural network with an online learning strategy. Three transfer learning benchmark data sets, i.e., 20 Newsgroups, WiFi Time, and Botswana, are used for evaluation. In addition, the data samples are corrupted with white Gaussian noise up to 50 %, in order to assess the robustness of the online FMM network in handling noisy transfer learning tasks. The results are analyzed and compared with those from other methods. The outcomes indicate that the online FMM network is effective for undertaking transfer learning tasks in noisy environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.