Abstract
Open educational video resources are gaining popularity with a growing number of massive open online courses (MOOCs). This has created a niche for content providers to adopt effective solutions in automatically organizing and structuring of educational resources for maximum visibility. Recent advances in deep learning techniques are proving useful in managing and classifying resources into appropriate categories. This paper proposes one such convolutional neural network (CNN) model for classifying video lectures in a MOOC setting using a transfer learning approach. The model uses a time-aligned text transcripts corresponding to video lectures from six broader subject categories. Video lectures and their corresponding transcript dataset is gathered from the Coursera MOOC platform. Two different CNN models are proposed: i) CNN based classification using embeddings learned from our MOOC dataset, ii) CNN based classification using transfer learning. Word embeddings generated from two well known state-of-the-art pre-trained models Word2Vec and GloVe, are used in the transfer learning approach for the second case. The proposed CNN models are evaluated using precision, recall, and F1 score and the obtained performance is compared with both conventional and deep learning classifiers. The proposed CNN models have an F1 score improvement of 10-22 percentage points over DNN and conventional classifiers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.