Abstract
The Quality of Service (QoS) of virtual machines (VMs) are ensured through the Service Level Agreements (SLAs) signed between the consumers and the cloud providers. A main way to avoid the SLAs violation is to analyze the relationships among the multiple VM-related features and then measure the QoS of VMs accurately. Therefore, we first propose to construct a QoS Bayesian Network (QBN), so as to quantify the uncertain dependencies among the VM-related features and then measure the QoS of VMs effectively. Moreover, we show that the dynamical changes of hardware\software setting or the different types of loads will affect the measurement decisions of QBN. Thus, we further resort to the instance-based transfer learning and then propose a novel QBN updating method (QBNtransfer). QBNtransfer re-weights the constantly updated data instances, and then combine the Maximum Likelihood Estimation and the hill-climbing methods to revise the parameters and structures of QBN accordingly. The experiments conducted on the Alibaba published datasets and the benchmark running results on our simulated platform have shown that the QBN can measure the QoS of VMs accurately and QBNtransfer can update the QBN effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.