Abstract

AbstractSpecific emitter identification (SEI) represents a prominent research direction within the electronic countermeasures domain aimed at discerning carrier identity attributes by analysing subtle radar characteristics. At present, most established SEI techniques assume that both the source and target domain (TD) data adhere to the same distribution. However, this assumption is invalidated by semantic drift which frequently occurs between TD and source domain (SD) samples owing to variations in the collection environment, equipment, and other factors. Considering the aforementioned challenges, this article introduces a transfer learning approach for SEI to leverage pseudo‐label integration within the framework of meta‐learning. This approach employs the bispectral perimeter integral for extracting emitter signal features to construct a feature extractor and basic learner based on CNN13. To label and filter the TD samples, the proposed approach utilises the multiple pseudo‐label serial filtering mechanism, which comprises positive and negative pseudo‐labelling strategies, label uncertainty prediction methods, and hard sample filtering strategies. Ultimately, to address algorithmic real‐time requirements, the labelled TD samples are integrated into the feature extractor and learner of the SD through meta‐learning to facilitate the transfer of TD features to the SD training model. Experimental validation conducted on a real radar dataset demonstrated that the proposed algorithm significantly enhances identification accuracy, exhibiting an improvement from approximately 50% to approximately 90%. Furthermore, the algorithm exhibits a short runtime and robust adaptability, effectively catering to the demands of practical scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.