Abstract

In practical bearing fault diagnosis tasks, the available labeled data are often not from the equipment to be diagnosed and cannot cover all manner of working conditions. The adopted data-driven method is required to have a certain degree of cross-domain and cross-working condition transfer learning diagnosis ability. However, limited by the performance of existing transfer learning methods, the potential difference between the source domain and the target domain poses a challenge for the accuracy of transfer diagnosis. In this paper, a cross-working condition data supplement method based on the cycle generative adversarial network (CycleGAN) and a dynamics model is proposed, which can use limited available data to approximate the missing parts of existing data and be used for diagnosis of the target domain. First, we considered the limited experimental data as the target domain, the simulation data corresponding to the working condition as the source domain and used the working condition as the benchmark to constrain the data correspondence between the two datasets. We then used the CycleGAN model to learn the feature mapping from simulation to experiment. Second, based on the working condition of the data to be tested, the corresponding simulation data were input into the trained generator to obtain labeled data with experimental characteristics under the corresponding working conditions, and transferred the dataset as the source domain data to the data to be tested. In the test using self-made simulation and experimental datasets, combined with the transfer learning method based on the probability distribution adaptation, it was shown that the proposed method could effectively improve the diagnostic impact of the single transfer learning method in cross-domain and cross-working conditions when the working condition span was large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.