Abstract
AbstractThis paper presents and compares alternative transfer learning methods that can increase the power of conditional testing via knockoffs by leveraging prior information in external data sets collected from different populations or measuring related outcomes. The relevance of this methodology is explored in particular within the context of genome-wide association studies, where it can be helpful to address the pressing need for principled ways to suitably account for, and efficiently learn from the genetic variation associated to diverse ancestries. Finally, we apply these methods to analyze several phenotypes in the UK Biobank data set, demonstrating that transfer learning helps knockoffs discover more associations in the data collected from minority populations, potentially opening the way to the development of more accurate polygenic risk scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.