Abstract

Machine learning has been widely utilized in flow field modeling and aerodynamic optimization. However, most applications are limited to two-dimensional problems. The dimensionality and the cost per simulation of three-dimensional problems are so high that it is often too expensive to prepare sufficient samples. Therefore, transfer learning has become a promising approach to reuse well-trained two-dimensional models and greatly reduce the need for samples for three-dimensional problems. This paper proposes to reuse the baseline models trained on supercritical airfoils to predict finite-span swept supercritical wings, where the simple swept theory is embedded to improve the prediction accuracy. Two baseline models are investigated: one is commonly referred to as the forward problem of predicting the pressure coefficient distribution based on the geometry, and the other is the inverse problem that predicts the geometry based on the pressure coefficient distribution. Two transfer learning strategies are compared for both baseline models. The transferred models are then tested on complete wings. The results show that transfer learning requires only approximately 500 wing samples to achieve good prediction accuracy on different wing planforms and different free stream conditions. Compared to the two baseline models, the transferred models reduce the prediction error by 60% and 80%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.