Abstract
A fully automatic approach for the segmentation of the left ventricle (LV) myocardium in porcine cardiac cine MRI images is proposed based on deep convolutional neural networks (CNN). We trained a 56-layer residual learning CNN (ResNet-56) from scratch on a set of porcine cine MRI images acquired internally, and another CNN via transfer learning by fine tuning a network previously trained on a public human cine MRI dataset. A leave-one-out validation was performed on an 8-specimen porcine cardiac cine MRI dataset (3,600 slices). Comparisons with manual segmentations show that both CNN models are able to produce precise results (99.94% “good” segmentations), while the CNN trained through transfer learning performs better by achieving Dice similarity coefficient (DSC) of 0.86, Hausdorff distance (HD) of 4.01 mm, and overall average perpendicular distance (APD) of 1.04 mm on average.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.