Abstract

Currently, numerous machine learning (ML) techniques are being applied in the field of renewable energy (RE). These techniques may not perform well if they do not have enough training data. Additionally, the main assumption in most of the ML algorithms is that the training and testing data are from the same feature space and have similar distributions. However, in many practical applications, this assumption is false. Recently, transfer learning (TL) has been introduced as a promising machine-learning framework to mitigate these issues by preparing extra-domain data so that knowledge may be transferred across domains. This learning technique improves performance and avoids the resource expensive collection and labeling of domain-centric datasets; furthermore, it saves computing resources that are needed for re-training new ML models from scratch. Lately, TL has drawn the attention of researchers in the field of RE in terms of forecasting and fault diagnosis tasks. Owing to the rapid progress of this technique, a comprehensive survey of the related advances in RE is needed to show the critical issues that have been solved and the challenges that remain unsolved. To the best of our knowledge, few or no comprehensive surveys have reviewed the applications of TL in the RE field, especially those pertaining to forecasting solar and wind power, load forecasting, and predicting failures in power systems. This survey fills this gap in RE classification and forecasting problems, and helps researchers and practitioners better understand the state of the art technology in the field while identifying areas for more focused study. In addition, this survey identifies the main issues and challenges of using TL for REs, and concludes with a discussion of future perspectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.