Abstract

Cardiovascular image registration is an essential approach to combine the advantages of preoperative 3D computed tomography angiograph (CTA) images and intraoperative 2D X-ray/digital subtraction angiography (DSA) images together in minimally invasive vascular interventional surgery (MIVI). Recent studies have shown that convolutional neural network (CNN) regression model can be used to register these two modality vascular images with fast speed and satisfactory accuracy. However, CNN regression model trained by tens of thousands of images of one patient is often unable to be applied to another patient due to the large difference and deformation of vascular structure in different patients. To overcome this challenge, we evaluate the ability of transfer learning (TL) for the registration of 2D/3D deformable cardiovascular images. Frozen weights in the convolutional layers were optimized to find the best common feature extractors for TL. After TL, the training data set size was reduced to 200 for a randomly selected patient to get accurate registration results. We compared the effectiveness of our proposed nonrigid registration model after TL with not only that without TL but also some traditional intensity-based methods to evaluate that our nonrigid model after TL performs better on deformable cardiovascular image registration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call