Abstract

This paper concerns with the JY-KPLS model based transfer learning for the operation optimization of nonlinear batch processes. Due to problems of data insufficiency and uncertainties in a new nonlinear batch process that has just been put into production, the model-(new) process mismatch is usually inevitable, which is also the main reason for the poor performance of the batch process. To solve this problem, this paper first adopts the JY-KPLS model to capture the behavior of the nonlinear batch process, and takes full advantage of the information in similar batch processes to assist the modeling and operation optimization of a new process. Then, a data selection based batch-to-batch optimization control strategy is proposed in this paper to reduce the adverse effects of this mismatch on the operation of the new batch process. Finally, the feasibility of the proposed method is demonstrated by simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.