Abstract
SummaryRobust and adaptive control strategies are needed when robots or automated systems are introduced to unknown and dynamic environments where they are required to cope with disturbances, unmodeled dynamics, and parametric uncertainties. In this paper, we demonstrate the capabilities of a combined adaptive control and iterative learning control (ILC) framework to achieve high‐precision trajectory tracking in the presence of unknown and changing disturbances. The adaptive controller makes the system behave close to a reference model; however, it does not guarantee that perfect trajectory tracking is achieved, while ILC improves trajectory tracking performance based on previous iterations. The combined framework in this paper uses adaptive control as an underlying controller that achieves a robust and repeatable behavior, while the ILC acts as a high‐level adaptation scheme that mainly compensates for systematic tracking errors. We illustrate that this framework enables transfer learning between dynamically different systems, where learned experience of one system can be shown to be beneficial for another different system. Experimental results with two different quadrotors show the superior performance of the combined ‐ILC framework compared with approaches using ILC with an underlying proportional‐derivative controller or proportional‐integral‐derivative controller. Results highlight that our ‐ILC framework can achieve high‐precision trajectory tracking when unknown and changing disturbances are present and can achieve transfer of learned experience between dynamically different systems. Moreover, our approach is able to achieve precise trajectory tracking in the first attempt when the initial input is generated based on the reference model of the adaptive controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Adaptive Control and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.