Abstract
This paper presents a transfer learning method to enhance locomotion intent prediction in novel transfemoral amputee subjects, particularly in data-sparse scenarios. Transfer learning is done with three pre-trained models trained on separate datasets: transfemoral amputees, able-bodied individuals, and a mixed dataset of both groups. Each model is subsequently fine-tuned using data from a new transfemoral amputee subject. While subject-dependent models, trained and tested using individual user data, can achieve the least error rate, they require extensive training datasets. In contrast, our transfer learning approach yields comparable error rates while requiring significantly less data. This highlights the benefit of using preexisting, pre-trained features when data is scarce. As anticipated, the performance of transfer learning improves as more data from the subject is made available. We also explore the performance of the intent prediction system under various sensor configurations. We identify that a combination of a thigh inertial measurement unit and load cell offers a practical and efficient choice for sensor setup. These findings underscore the potential of transfer learning as a powerful tool for enhancing intent prediction accuracy for new transfemoral amputee subjects, even under data-limited conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.