Abstract
Abstract Transfer learning (TL) is a machine learning (ML) tool where the knowledge, acquired from a source domain, is “transferred” to perform a task in a target domain that has (to some extent) a similar setting. The underlying concept does not require the ML method to analyze a new problem from the beginning, and thereby both the learning time and the amount of required target-domain data are reduced for training. An example is the occurrence of thermoacoustic instability (TAI) in combustors, which may cause pressure oscillations, possibly leading to flame extinction as well as undesirable vibrations in the mechanical structures. In this situation, it is difficult to collect useful data from industrial combustion systems, due to the transient nature of TAI phenomena. A feasible solution is the usage of prototypes or emulators, like a Rijke tube, to produce largely similar phenomena. This paper proposes symbolic time-series analysis (STSA)-based TL, where the key idea is to develop a capability of discrimination between stable and unstable operations of a combustor, based on the time-series of pressure oscillations from a data source that contains sufficient information, even if it is not the target regime, and then transfer the learnt models to the target regime. The proposed STSA-based pattern classifier is trained on a previously validated numerical model of a Rijke-tube apparatus. The knowledge of this trained classifier is transferred to classify similar operational regimes in: (i) an experimental Rijke-tube apparatus and (ii) an experimental combustion system apparatus. Results of the proposed TL have been validated by comparison with those of two shallow neural networks (NNs)-based TL and another NN having an additional long short-term memory (LSTM) layer, which serve as benchmarks, in terms of classification accuracy and computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.