Abstract

Bearings are crucial components in rotating machinery equipment. Bearing fault diagnosis plays a significant role in the maintenance of mechanical equipment. This study aims to enhance the practicality of bearing fault diagnosis to meet real-world engineering requirements. In real industrial environments, the continuously changing operating conditions such as equipment speed and load pose challenges in collecting data for bearing fault diagnosis, as it is challenging to gather data for all operational conditions. This paper proposes a transfer learning approach for bearing fault diagnosis based on adaptive batch normalization (AdaBN) and a combined optimization algorithm. Initially, a ResNet neural network is trained using source domain data. Subsequently, the trained model is transferred to the target domain, where AdaBN is applied to mitigate domain shift issues. Furthermore, a combined optimization algorithm is employed during model training to enhance fault diagnosis accuracy. Experimental validation is conducted using bearing data from the Case Western Reserve University dataset and Northeast Forestry University (NEFU) dataset. Comparison shows that AdaBN and the combined optimization algorithm improve bearing fault diagnosis accuracy effectively. On the NEFU dataset, the diagnostic accuracy exceeds 95%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call