Abstract
As improper inspection of construction works can cause an increase in project costs and a decrease in project quality, construction inspection is considered a critical factor for project success. While traditional inspection tasks are still mainly labor-intensive and time-consuming, computer vision has the potential to revolutionize the construction inspection process by providing more efficient and effective ways to monitor the progress and quality of construction projects. However, previous studies have also indicated that the performance of vision-based site monitoring heavily relies on the volume of training data. To address the issues of challenging data collection at construction sites, this study developed models using transfer learning-based object detection models incorporating data augmentation and transfer learning. The performance of three object detection algorithms was compared based on average precision and inference time for detecting T/S bolt fastening of steel structure. Despite the limited training data available, the model’s performance was improved through data augmentation and transfer learning. The proposed inspection model can increase the efficiency of quality control works for building construction projects and the safety of inspectors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.