Abstract

In the actual industrial application of robots, the characteristics of robot malfunctions change accordingly as the working environment becomes increasingly diverse and complex. Utilizing the original fault diagnosis models in new working environments correspondingly leads to a decline in the performance and the generalization capability of the model. Moreover, the monitoring data collected in new working processes often has limited or no labels, making the diagnosis models trained with this data unable to identify faults accurately. In this paper, we propose a Domain adaptive Cross-process Fault Diagnosis method (DCFD) to leverage knowledge from existing working processes for diagnosing faults in new working processes. DCFD uses Multi-Kernel Maximum Mean Discrepancy (MK-MMD) to measure the difference between the current working processes and the previous working processes, enhancing the fault diagnosis capability of the robotic system in cross-process scenarios. DCFD achieves an average fault classification accuracy of 98% on 12 types of migration tasks, which demonstrates the effectiveness of DCFD on cross-process fault diagnosis classification tasks in real-time industrial application scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call