Abstract
Transfer Learning (TL) can significantly lower training time and reduce dependency on a large number of target domain datasets. Such an approach is still not exploited for robotic prediction tasks. Currently, a TL based Artificial Neural Network (ANN) is explored and validated for robotic forward kinematics estimation of a 6-DOF robot. The robotic positions are estimated from the available joint angle information. The 6-R MTAB Aristo-XT robot is selected as a case study to generate the target experimental training and testing data for validation of ML techniques. While, the PUMA 560 6-DOF robot is used as a source for prior training of the ANN model. Standard performance measures such as learning error, deviation error and Mean Square Error (MSE) are evaluated and graphical illustrations are presented for fair comparison of the results. Experimental results reveal that, instead of ANN, the TL-ANN is strongly suggested to improve the training time of ANN regressor, and it also reduces the randomness and improves the accuracy as compared to its counterpart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Metaheuristic Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.