Abstract

Development of computer-aided diagnosis (CAD) systems is motivated by reduction of the workload on the pathologist that is increasing steadily. Among approaches upon which CAD-based systems are built, deep learning (DL) methods seem to be well suited for image analysis in digital pathology. However, DL networks include a large number of parameters and that requires a large annotated training dataset. Unfortunately, probably the biggest problem in digital pathology using machine learning methods is a small number of annotated images. That is especially true in intraoperative tissue analysis which coincides with the topic of the present paper: intraoperative CAD-based diagnosis of metastasis of colon cancer in a liver from hematoxylin-eosin (H and E) stained frozen section. To cope with the insufficiency of training images we adopt a transfer learning approach using the Nested UNet architecture. For better diagnostic performance, the trained model predicted pixels multiple times for different striding levels using the sliding window strategy. Threshold optimization using balanced accuracy score showed the validity of such an approach as balanced accuracy has increased significantly. When compared to often used UNet with VGG16 backbone, Nested UNet model with DenseNet201 backbone performs better on our dataset for both balanced accuracy metric and F1 score.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.