Abstract

The theory of a transfer function method of measuring normal incident in-duct acoustic properties is presented. In this method, a broadband stationary random acoustic wave in a tube is mathematically decomposed into its incident and reflected components using a simple transfer-function relation between the acoustic pressure at two locations on the tube wall. The wave decomposition leads to the determination of the complex reflection coefficient from which the complex acoustic impedance and the sound absorption coefficient of a material and the transmission loss of a silencer element can be determined. Also presented are the theories of two techniques for improving transfer function estimates: a sensor-switching technique for automatic system calibration and a coherence function technique for signal enhancement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.