Abstract
Abstract The heat pipe cooled reactor adopts the solid-state reactor design concept and the heat is passively transferred out of the core through heat pipes. It is characterized by high inherent safety and simple operation and has broad application prospects in deep space exploration and propulsion, sea submarine navigation and exploration. The design of heat pipe cooled reactor is unique, and its dynamics are different from traditional water-cooled reactors. Therefore, it is necessary to develop its dynamic model and perform dynamic analysis, and in this paper, the study object of the heat pipe cooled reactor is the 100kW nuclear silent thermoelectric reactor (NUSTER-100). A nonlinear dynamic model is derived from the conservation equations of mass, energy and momentum. Point reactor kinetics equations are adopted. The linear dynamic model is constructed by linearization of the nonlinear model based on the disturbance theory and the transfer function is further derived applying Laplace transform. Both models including the nonlinear model and transfer function model are established on the MATLAB & Simulink simulation platform. Dynamic characteristic analysis contains time domain analysis and frequency domain analysis. For the time domain analysis, by introducing a variety of boundary condition disturbances, the results were compared with those from transfer function. The results are consistent and can correctly reflect the dynamic characteristics of the heat pipe cooled reactor. Therefore, the transfer function model can be applied to the subsequent design of the heat pipe cooled reactor power control system. For the dynamic analysis, it is divided into time domain and frequency domain. The time domain is to observe the change of core power and sodium temperature by introducing reactivity disturbance. For the frequency domain, after drawing the Bode plot of the transfer function, the system’s characteristics at different frequencies are analyzed. In addition, it can provide a theoretical basis for the design of the heat pipe cooled reactor power control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.