Abstract

Abstract With the improvements of 3D metal printing of turbine components, it is now feasible to produce ready to use production quality parts without casting and conventional machining. This new manufacturing technique has opened new frontiers in cooling optimizations that could not be practiced before. For example, it is now or in-the-near-future possible to have unconventional diameters of film holes. This paper seeks to optimize each film hole diameter at the leading edge of a turbine to achieve an optimum thermal objective. The design technique developed uses a transfer function-based learning model and can be used for both stationary and rotating airfoils. Proposed optimization procedure will also work on other parts of an airfoil; but our current analysis is limited to the leading-edge region. To apply this work on other critical regions, the corresponding heat transfer coefficients need to be implemented while building the transfer functions suitable for that specific component; however, the underlying optimization technique stays the same for any other component. Any optimization technique needs cost and benefit criteria. Cost is minimized in optimization to get maximum benefit with given constraints. In gas-turbine heat transfer, there is a ceiling constraint on maximum temperature that must be satisfied. This study minimizes the coolant flow with satisfying the constraints on average metal temperature and metal temperature variations that limit the life of turbine components. Proposed methodology provides a scientific basis for the sizing of film holes and is expected to decrease developmental cost of efficient thermal designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.