Abstract

This paper presents a novel formulation and exact solution of the frequency response function (FRF) of vibration energy harvesting beam systems by the distributed transfer function method (TFM). The method is applicable for coupled electromechanical systems with nonproportional damping, intermediate constraints, and nonclassical boundary conditions, for which the system transfer functions are either very difficult or cumbersome to obtain using available methods. Such systems may offer new opportunities for optimized designs of energy harvesters via parameter tuning. The proposed formulation is also systematic and amenable to algorithmic numerical coding, allowing the system response and its derivatives to be computed by only simple modifications of the parameters in the system operators for different boundary conditions and the incorporation of feedback control principles. Examples of piezoelectric energy harvesters with nonclassical boundary conditions and intermediate constraints are presented to demonstrate the efficacy of the proposed method and its use as a design tool for vibration energy harvesters via tuning of system parameters. The results can also be used to provide benchmarks for assessing the accuracies of approximate techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call