Abstract

We invented a novel method to fabricate graphene transistors on oxidized silicon wafers without the need to transfer graphene layers. By means of catalytic chemical vapor deposition (CCVD) the in situ grown bilayer graphene transistors (BiLGFETs) are realized directly on oxidized silicon substrate, whereby the number of stacked graphene layers is determined by the selected CCVD process parameters, e.g. temperature and gas mixture. BiLGFETs exhibit ultra-high on/off-current ratios of 107 at room temperature, exceeding previously reported values by several orders of magnitude. This will allow a simple and low-cost integration of graphene devices for digital nanoelectronic applications in a hybrid silicon CMOS environment for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.