Abstract

Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination.

Highlights

  • Aging is associated with neurochemical, structural, and functional brain changes (Grady, 2012) that affect various cognitive functions

  • The control group did not show an improvement from T1 to T2, whereas the training group improved significantly in working memory (WM) performance from T1 to T2 for one-back (t(15) = 3.400, p = 0.003), two-back (t(15) = 7.368, p < 0.001), and three-back (t(15) = 4.568, p < 0.001, see Table 2)

  • A 4-week WM training intervention in a sample of older adults was associated with an increase in WM performance in the training group but not in an untrained control group

Read more

Summary

Introduction

Aging is associated with neurochemical, structural, and functional brain changes (Grady, 2012) that affect various cognitive functions. It has been suggested that efficient functioning of such a frontoparietal WM network is reduced in older adults, as indicated by relatively higher activation at low WM load and relatively lower activation at high WM load when compared to younger adults (Schneider-Garces et al, 2010; Nagel et al, 2011; Heinzel et al, 2014a) These age-related changes in WM load-dependent activation patterns have been described within the framework of the compensation-related utilization of neural circuits hypothesis (CRUNCH, Reuter-Lorenz and Cappell, 2008). An over-recruitment of neural resources at low WM load has been associated with inefficient neural processing (Barulli and Stern, 2013)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.