Abstract

Transfer condition monitoring across wind turbines still exists two issues. (1) The model of single turbine trained is directly used for other ones in the wind farm to result in low monitoring accuracy because of individual features of each turbine; (2) if the model is trained separately for each turbine, it is not only time-consuming and inefficient, but also is difficult to transfer across turbines. For solving the two issues, a transfer condition monitoring method across wind turbines using feature alignment and parameter fine-tuning is proposed. First, the representative normal turbine in a wind farm is screened by calculating the correlation between the monitoring parameters of wind turbines; second, the input features are constructed by using the massive normal supervisory control and data acquisition data of the representative turbine. The intelligent condition monitoring model of wind turbines is designed by using convolutional neural networks for spatial features and long-term and short-term memory networks for time features. Finally, feature alignment is performed using the normal data of the representative turbine and a large amount of historical normal data from other turbines to reduce data distribution differences. The aligned data is inputted into pre-training monitoring models for parameter fine-tuning. The personalized features of each turbine are incorporated to achieve high-precision transfer condition monitoring across turbines. The proposed method is verified by the real-world turbine data from a wind farm cooperated with us. The results show that the proposed transfer condition monitoring method using feature alignment and parameter fine-tuning can accurately monitor and identify the health states of wind turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call