Abstract
According to the principle of Locard “Every contact leaves a trace", when touching a surface, a bi-directional transfer of self and non-self-DNA residing on the hands and touched objects can occur. Metals are commonly encountered in forensic evidence and, during hand contact with these surfaces, a transfer of metal particles could occur together with the transfer of human DNA. This study proposes a proof-concept approach for the original detection of metal particles and touch DNA to track the activity performed by a donor and particularly to assess the metallic substrate touched before the contact with a subsequent surface. To this scope, a scenario of contact events was simulated by three volunteers, who participated in fingerprint deposition firstly on copper and then on plastic and glass surfaces. Twenty-four stubs were collected on the hands of volunteers and the secondary surfaces and then analyzed by environmental scanning electron microscopy (ESEM). DNA was quantified only from copper and plastic surfaces. Ten additional volunteers followed the same protocol of deposition on copper and then on plastic surfaces to evaluate DNA transfer only. On 20 touch DNA samples, the copper surface yielded significantly lower DNA amounts, ranging from 0.001 to 0.129 ng/μl, compared to the secondary touched plastic surface, ranging from 0.007 to 0.362 ng/μl. ESEM-EDS analysis showed that copper particles could be abundantly detected on the hands of the volunteers after contact with the copper surface. Particles containing silicates with copper were shown on plastic, while they were only found in 1/3 of samples on glass. Our proof-of-concept study has shown that ESEM-EDS analysis has the potential to detect copper particles transferred to the hands of volunteers during contact with a copper metallic surface and deposited on secondarily touched items. The results suggest that this original ESEM-DNA parallel approach could potentially allow the tracking of DNA transfer and metal particles at a crime scene, although this represents only a first step and further research on a wider casuistry could help to address the interpretation of results given activity level propositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.