Abstract

In situ mating experiments were done in the River Taff, South Wales, United Kingdom, by using a natural mercury resistance plasmid (pQM1) isolated from a mixture of epilithic bacteria in vitro. The river temperature from March to November was found to influence transfer frequencies strongly (6.8 x 10 to 1.5 x 10 per recipient). A linear relationship existed between log(10) transfer frequency and river temperature (6 to 21 degrees C), a 2.6 degrees C change in temperature giving a 10-fold change in transfer frequency. In vitro experiments showed that pQM1 transferred most efficiently between fluorescent pseudomonads and that one epilithic isolate (Pseudomonas fluorescens) was an efficient donor in situ. Experiments with a P. putida recipient showed that intact epilithic bacterial communities could transfer mercury resistance plasmids in situ at frequencies of up to 3.75 x 10 per recipient. Nineteen of the large (>250-kilobase) plasmids isolated by transfer into P. putida were studied in detail and grouped into seven types by restriction digests. Mercury resistance and UV resistance were found to be common linked phenotypes in 19 of the 23 plasmids tested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call