Abstract

The structure of $^{194}\mathrm{Ir}$ is investigated via ($n,\ensuremath{\gamma}),(n,{e}^{\ensuremath{-}}),(d,p)$, and ($\stackrel{\ensuremath{\rightarrow}}{d},\ensuremath{\alpha}$) spectroscopy. The use of different methods leads to an almost complete level scheme up to high excitation energies including \ensuremath{\gamma}-decay and spin-parity assignments. A reanalysis of the formerly published ($n,\ensuremath{\gamma}$) data was triggered by our new ($d,p$) and ($\stackrel{\ensuremath{\rightarrow}}{d},\ensuremath{\alpha}$) transfer reactions. The experimental level scheme is compared to predictions using extended supersymmetry. Herein, the classification of states was done according to quantum numbers, excitation energies, and ($\stackrel{\ensuremath{\rightarrow}}{d},\ensuremath{\alpha}$) transfer strengths. A one-to-one correspondence in excitation energies was obtained for the 23 lowest lying theoretical states with similar structures for the experimental and calculated level schemes. The two-nucleon transfer strengths show remarkable agreement. A Nilsson classification is discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.