Abstract

The transfer and transformation of paralytic shellfish poisoning (PSP) from scallop Chlamys nobilis to spiny lobster Panulirus stimpsoni were investigated in the present study. The results demonstrate that transfer and transformation of PSP toxins occurred when Panulirus stimpsoni were fed with toxic viscera of Chlamys nobilis, but depurated with non-toxic squids. Additionally, only the lobster hepatopancreas were found to contain PSP, and the toxin profiles were the same with those in the viscera of the scallop, including carbamate toxins (GTX 1−3), N-sulfocarbamoyl toxins (C 1+2 and B 1) and decarbamoyl toxins (dcGTX 2+3). Unlike the lobster, the scallop contained more α than β toxins. After being fed with toxic Chlamys nobili for 6 d, Panulirus stimpsoni selectively accumulated N-sulfocarbamoyl toxins with low toxicity. However, when they were depurated with non-toxic squid, N-sulfocarbamoyl toxins tended to transform into carbamate toxins with higher toxicity. The concentration of dcGTX 2+3 in Panulirus stimpsoni decreased significantly and wasn’t detectable after depuration for 6 d, which was likely due to their initial low accumulation of toxins. These results reveal that PSP could be transferred and transformed in Crustaceans along the given food chain under the conditions of laboratory, but there are many questions remained to be solved, and the further studies should be carried out.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call