Abstract

Sites polluted with organic compounds frequently contain inorganic pollutants such as heavy metals. The latter might inhibit the biodegradation of the organics and impair bioremediation. Chromosomally located polychlorinated biphenyl (PCB) catabolic genes of Alcaligenes eutrophus A5, Achromobacter sp. LBS1C1 and Alcaligenes denitrificans JB1 were introduced into the heavy metal resistant Alcaligenes eutrophus strain CH34 and related strains by means of natural conjugation. Mobile elements containing the PCB catabolic genes were transferred from A. eutrophus A5 and Achromobacter sp. LB51C1 into A. eutrophus CH34 after transposition onto their endogenous IncP plasmids pSS50 and pSS60, respectively. The PCB catabolic genes of A. denitrificans JB1 were transferred into A. eutrophus CH34 by means of RP4::Mu3A mediated prime plasmid formation. The A. eutrophus CH34 transconjugant strains expressed both catabolic and metal resistance markers. Such constructs may be useful for the decontamination of sites polluted by both organics and heavy metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.