Abstract

Previous studies have shown that the nervous system can produce anticipatory adjustments that alter the mechanical behavior of the arm in order to resist environmental disturbances. In the present paper, we focus on the ability of subjects to transfer acquired stiffness patterns to other parts of the workspace and on the durability of stiffness adaptations. To explore the transfer of stiffness control, subjects were trained at the left of the workspace to resist the effects of a single-axis disturbance that was applied by a robotic device. Following training, they were tested for transfer at the right. One group of subjects experienced similar torques at the left and right of the workspace, whereas the other group of subjects experienced similar forces at the hand. Following the initial training at the left, the observed orientation of the hand-stiffness ellipse rotated in the direction of the disturbance. In tests at the right, transfer was observed only when the direction of disturbance resulted in torques that were similar to those experienced during training. The results thus suggest that under the conditions of this experiment stiffness control is acquired and transfers in a joint- or muscle-based system of coordinates. A second experiment assessed the durability of an acquired stiffness pattern. Subjects were trained on 2 consecutive days to resist a single-axis disturbance. On a third day, the direction of the disturbance was switched by 90 degrees . Substantial interference with the new adaptation was observed. This suggests that stiffness training results in durable changes to the neural signals that underlie stiffness control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.