Abstract
We report extremely strong chirality transfer from a chiral nickel complex to solvent molecules detected as Raman optical activity (ROA). Electronic energies of the complex were in resonance with the excitation-laser light. The phenomenon was observed for a wide range of achiral and chiral solvents. For chiral 2-butanol, the induced ROA was even stronger than the natural one. The observations were related to so-called quantum (molecular) plasmons that enable a strong chiral Rayleigh scattering of the resonating complex. According to a model presented here, the maximal induced ROA intensity occurs at a certain distance from the solute, in a three-dimensional "ring of fire", even after rotational averaging. Most experimental ROA signs and relative intensities could be reproduced. The effect might significantly increase the potential of ROA spectroscopy in bioimaging and sensitive detection of chiral molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.