Abstract

Ag presentation by dendritic cells (DC) is crucial for induction of primary T cell-mediated immune responses in vivo. Because DC culture from blood or bone marrow-derived progenitors is now clinically applicable, this study investigated the effectiveness of in vitro-generated murine bone marrow-derived DC (Bm-DC) for in vivo immunization protocols. Previous studies demonstrated that GM-CSF is an essential growth and differentiation factor for DC in culture and that in vivo administration of GM-CSF augments primary immune responses, which renders GM-CSF an attractive candidate to further enhance the effectiveness of DC-based immunotherapy protocols. Therefore, immature Bm-DC were transiently transfected with the GM-CSF gene and tested for differentiation, migration, and Ag-presenting capacity in vitro and in vivo. In vitro, GM-CSF gene-transfected Bm-DC were largely unaltered with regard to MHC and costimulatory molecule expression as well as alloantigen or peptide Ag-presenting capacity. When used for in vivo immunizations, however, the Ag-presenting capacity of GM-CSF gene-transfected Bm-DC was greatly enhanced compared with mock-transfected or untransfected cells, as determined by their effectiveness to induce primary immune reactions against hapten, protein Ag, and tumor Ag, respectively. Increased effectiveness in vivo correlated with the better migratory capacity of GM-CSF gene-transfected Bm-DC. These results show that GM-CSF gene transfection significantly enhances the capacity of DC to induce primary immune responses in vivo, which might also improve DC-based vaccines currently under clinical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.