Abstract

Transesterification of waste cooking oil with heterogeneous (heteropoly acid) catalyst and methanol has been investigated. Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to study the relationship between process variables and free fatty acid conversion and for predicting the optimal parameters. The highest conversion was 88.6% at optimum condition being 14h, 65°C, 70:1 and 10wt% for reaction time, reaction temperature, methanol to oil molar ratio and catalyst loading, respectively. The RSM and ANN could accurately predict the experimental results, with R2=0.9987 and R2=0.985, respectively. Kinetics studies were investigated to describe the system. The reaction followed first-order kinetics with the calculated activation energy, Ea=53.99kJ/mol while the pre-exponential factor, A=2.9×107min−1. These findings can help improve an environmentally friendly biodiesel process that conforms to ASTM D6751 standards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.