Abstract

The transesterification of karanja oil with methanol was carried out using solid basic catalysts. Alkali metal-impregnated calcium oxide catalysts, due to their strong basicity, catalyze the transesterification of triacylglycerols. The alkali metal (Li, Na, K)-doped calcium oxide catalysts were prepared and used for the transesterification of karanja oil containing 0.48-5.75% of free fatty acids (FFA). The reaction conditions, such as catalyst concentration, reaction temperature and molar ratio of methanol/oil, were optimized with the solid basic Li/CaO catalyst. This catalyst, at a concentration of 2 wt-%, resulted in 94.9 wt-% of methyl esters in 8 h at a reaction temperature of 65 °C and a 12 : 1 molar ratio of methanol to oil, during methanolysis of karanja oil having 1.45% FFA. The yield of methyl esters decreased from 94.9 to 90.3 wt-% when the FFA content of karanja oil was increased from 0.48 to 5.75%. The performance of this catalyst was not significantly affected in the presence of a high FFA content up to 5.75%. The catalytic activities of Na/CaO and K/CaO were also studied at the optimized reaction conditions. In these two cases, the reaction initially proceeds slowly, however, leading to similar yields as in the case of Li/CaO after 8 h of reaction time. The purified karanja methyl esters have an acid value of 0.36 mg KOH/g and an ester content of 98.6 wt-%, which satisfy the American as well as the European specifications for biodiesel in terms of acid value and ester content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.